a2 United States Patent

Roulland et al.

US009467583B2

US 9,467,583 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR
SEMI-AUTOMATIC GENERATION OF
OPERATING PROCEDURES FROM
RECORDED TROUBLESHOOTING

SESSIONS

Applicant: Xerox Corporation, Norwalk, CT (US)

Inventors: Frederic Roulland, e Versoud (FR);
Stefania Castellani, Meylan (FR);
Fabien Guillot, La Tronche (FR); Yves
Hoppenot, Notre-Dame-de-Mésage
(FR)

Assignee:  XEROX CORPORATION, Norwalk,
CT (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 76 days.

Appl. No.: 14/261,027

Filed: Apr. 24, 2014

Prior Publication Data

US 2015/0312427 Al Oct. 29, 2015
Int. CL.

HO4N 1/00 (2006.01)

GO6K 15/00 (2006.01)

GoO6F 11/07 (2006.01)

U.S. CL

CPC ... HO04N 1/00344 (2013.01); GO6F 11/0733
(2013.01); GOGF 11/0748 (2013.01); GO6F
11/0793 (2013.01); GO6K 15/408 (2013.01);
HO4N 1/00408 (2013.01); HO4N 1/00474
(2013.01); HO4N 1/00506 (2013.01); HO4N
1/00954 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,490,089 A 2/1996 Smith et al.
7,058,567 B2 6/2006 Ait-Mokhtar et al.
7,647,534 B2 1/2010 Castellani et al.
7,715,037 B2 5/2010 Castellani et al.
7,774,198 B2* 8/2010 Roulland .............. GO6F 17/271
704/9
7,797,303 B2* 9/2010 Roulland .......... GO6F 17/30654
707/708
7,823,062 B2 10/2010 Liberty et al.
8,280,842 B2  10/2012 Roulland et al.
8,621,362 B2  12/2013 Castellani et al.
2005/0137843 Al 6/2005 Lux
2006/0078859 Al 4/2006 Mullin
2007/0179776 Al 8/2007 Segond et al.
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 13/849,630, filed Mar. 25, 2013, Proux.
(Continued)

Primary Examiner — Nicholas Pachol
Assistant Examiner — Pawandeep Dhingra
(74) Attorney, Agent, or Firm — Fay Sharpe LLP

(57) ABSTRACT

A method for generating procedures includes receiving a log
of a troubleshooting session. The log includes device data
including a sequence of detected operations performed on
the device causing respective components to change states.
Steps of a candidate operating procedure are generated,
based on the log, each corresponding to one of the detected
operations. Missing steps may be identified, based on state
charts and/or stored operability constraints for the device.
The candidate operating procedure is compared with exist-
ing operating procedures stored in a knowledge base for the
device to identify at least one existing operating procedure
which includes steps which match at least some of the steps
of the candidate operating procedure and, based on the
identified at least one existing operating procedure, gener-
ating a textual description based on the textual description of
the matching steps. The candidate procedure can be pre-
sented to an editor for validation.

19 Claims, 7 Drawing Sheets

BURING TROUBLESHOOTING SESSION,
o COLLECT DEVICE DATA, IDENTIFY
st PROCEDURE AND GENERATE VIRTUAL
REPRESENTATION OF THE DEVICE

PRESENT CANDIDATE PROCEDURE
TO FROCERURES EDITOR FOR
EDITING AND VALIDATION

UPDATE KNOWLEDGE BASE
TO INCLUDE THE CANDIDATE
PROCEDURE AS A NEW PROCEDURE

SMB“’{ENE}—————




US 9,467,583 B2
Page 2

(56)

2008/0091408

2008/0126860
2008/0294423
2009/0106224
2009/0292700
2010/0149571
2010/0229080
2011/0175901
2011/0270771
2012/0150920

2012/0290288
2013/0197899

References Cited

U.S. PATENT DOCUMENTS

Al* 4/2008 Roulland .......... GO6F 17/30672

Al 5/2008 Sampath et al.
Al  11/2008 Castellani et al.

Al*  4/2009 Roulland .......... GO6F 17/30646

Al  11/2009 Castellani et al.
Al 6/2010 Thieret et al.

Al 9/2010 Roulland et al.
Al 7/2011 Meunier et al.

Al  11/2011 Coursimault et al.

Al* 6/2012 Roulland .......... GO6F 17/30734

Al 11/2012 Ait-Mokhtar
Al 8/2013 Roulland et al.

OTHER PUBLICATIONS

O’Neill, et al. “From ethnographic study to mixed reality: collab-
orative troubleshooting system”, CSCW’11, ACM, pp. 225-234
(2011).

Roulland, et al. “Mixed reality for supporting office devices trouble-
shooting”, Proc. Virtual Reality 2011 Conference, IEEE Computer
Society, pp. 175-178 (2011).

Roulland, et al. “Query suggestion for on-device troubleshooting”,
12" IFIP TC13 Conf. in Human-Computer Interaction, pp. 1-4
(2009).

Castellani, et al. “Mobile 3D representations for device trouble-
shooting”, World Conf. on Innovative Virtual Reality, pp. 1-10
(2011).

* cited by examiner



US 9,467,583 B2

Sheet 1 of 7

HOLIE
\oow |92
ERTEN 78
2T N e [ 3030 \\
e Yiva I\
,&/ 90IAR0
T - .w
| 5907
<7/ nNoigsag <] HOIWMINID
NOLIYHINTD o AOVAHILNI
FHNAIO0H - ONILOOHSTIEN0HL
/ N INLYHOSYTIO0

Oct. 11, 2016

U.S. Patent

NN\ ﬁm%mmoom& Y

86

]




US 9,467,583 B2

Sheet 2 of 7

Oct. 11, 2016

U.S. Patent

¥ .

od
fe>]

o
bt
{

¢

H3LNAWE) HIANIS—OF -85
{

S M !

NOUVINISRIAR || REGNIN |
TYNAINDD TA00% 1D1A30 |
 HDLLVINAS3NGY 0F | | [uaovoran | [waiNgshud -+
wmmmwmwme o7y | dotvaNag par T
, | [ gl s s [T
L AWHANE 5 [uoveaedals |, ||
S31L43d0Yd kit Oh
RINOIWOD i ZIVNLKANG] | |
soowpwaa | | L SUPENORNEDO0M ||

m WMQM«szwgmvﬁmmthmAmw

Q0¥ N | | S SNOIDMEISM)

RHOWIH S pp

\

of

/

o —

PA30 SNILAAWED
40103 G0N

DEVICE DATA

z

(!
[ap)

ININGAWD 1 99
DI SHOSHIS
| i N o
w 54 w v
3055TI0%d VIV L 99
DIAIG
m aoww iz
"
L S




U.S. Patent

Oct. 11, 2016 Sheet 3 of 7

S102

DETECT START OF
TROUBLESHCOTING SESSION

v

S04

DURING TROUBLESHOOTING SESSION,

COLLECT DEVICE DATA, IDENTIFY
PROCEDURE AND GENERATE VIRTUAL
REPRESENTATION OF THE DEVICE

v

S106

RECEIVE SESSION LOGS
INCLUDING COLLECTED DEVICE DATA

v

510877

GENERATE CANDIDATE PROCEDURE
BASED ON COLLECTED DEVICE DATA

v

SMG—

PRESENT CANDIDATE PROCEDURE
TO PROCEDURES EDITOR FOR
EDITING AND VALIDATION

§112-——<__EDITORACCEPTS? >l

X

- T~

///
w

S14-

UPDATE KNOWLEDGE BASE
TO INCLUDE THE CANDIDATE
PROCEDURE AS ANEW PROCEDURE

US 9,467,583 B2

- END )
5116 Y



U.S. Patent Oct. 11, 2016 Sheet 4 of 7 US 9,467,583 B2

FREOM 5106
B f
Q22— CONTEXTUALIZATION OF PROCEDURE
204 — IDENTIFY MISSING STEPS
[ gong— CONVERT SEQUENCE OF STEPS INTO TEXT
S108 ‘é
IDENTIFY MATCHING PROCEDURES
3208 — THAT ALREADY EXIST IN THE KNOWLEDGE
BASE, INCREMENT COUNTER
- i
TG S0

FIG. 4



U.S. Patent

Oct. 11, 2016 Sheet S of 7

STATE“& CO% %ACTEQN‘;?)
ACTEON‘“‘

N— .._...\

“:ENii

STATEZ
GENERIC STATE MACHINE

FIG. 5

CLOSED
e

CPENED
DOOR STATE MACHINE

FIG. 6

PLACED LOCKEDR

hi

UNLOCK)

{
\_ LOCK

1l

REMOVED UNLOCKED

DRAWER (LEFT)
AND LOCKER (RIGHT)
STATE MACHINES

FIG. 7

US 9,467,583 B2



US 9,467,583 B2

Sheet 6 of 7

Oct. 11, 2016

U.S. Patent

86

8 old

0 et

m\
UDISON POXOOIUN BU O BTBUEL] BUTLIETY 401 1
. % i >
L @——o—o—o—) ® O——>
(WeN_J(snoiaid | yun Buiues)n sy soedey (g )
\
- Vi
ED ‘00 OHY

Y,




US 9,467,583 B2

Sheet 7 of 7

Oct. 11, 2016

U.S. Patent

6 Old

gt1 yel Zel
/, // \\
PE— — : Ny : ™
| ARG ﬁ deta ppy | ?mﬁm m%EQ&

"uolli50¢ P} sy o1 sjpuny Busuioy aup Jere \WJ
sjpuey Buiuieisy oyl Jamo \2/

£2°0
"R #OU BUJ PR LT BE] SUDIDRSH Doty 1) U1 IO HBADS HIND] Sy} U0 DRDInLSHl B Jiuy BuiuDep) Mau s yoisy) @
11 yun Buues)n sy peisyp
11 Buss)ichs proan of oaa] Bun sy deay of sans Supini ') Bujuoer) posn oy} sA0uRY ¢
e yun Bujugsin syl 2AOWISY

"noyised paypopn BU; o spuny Buikimiey syl Y

@
ajpuey Buueiay ays Y 2/

ity Sujsasyy syl aio307 pun Joog) jussd ey uadg 3 g
800 J00P 04 8yy usdy o
szﬁj Buitiesp aog|dal, Loje SMOUS 82IASD 9 UBUM LU8IG0Id TT\\mwm\
2.p330.40 8y Joj woudhnsap asiaxt 810w b ind um 104 asaym 8304 By 51 S M och
B} 81Npa00Id & 18)U et 3
ainpssoid sigal)
. A
O ™ .
NUBHY L 0Z 18Py 03 08y




US 9,467,583 B2

1
SYSTEM AND METHOD FOR
SEMI-AUTOMATIC GENERATION OF
OPERATING PROCEDURES FROM
RECORDED TROUBLESHOOTING
SESSIONS

BACKGROUND

The exemplary embodiment relates to maintenance and
repair of a device and finds particular application in con-
nection with a system for generating operating procedures
for maintenance or repair of an electromechanical device,
such as a printer.

Operating procedures, such as maintenance and repair
procedures used in troubleshooting problems with devices,
are often provided to customers in a technical manual in the
form of paper or digital documentation. In some cases, the
procedures may be in the form of a set of problems and
corresponding solutions which may be stored in indexed
form in a knowledge base. When a user of the device wishes
to identify the cause of a problem with the device or perform
maintenance, the documentation is reviewed to find relevant
information on the procedures which should be performed
on the device, often through keyword searching.

This type of user support suffers from several limitations.
For example, creating and maintaining a knowledge base of
procedures is expensive. It generally entails generating a
first set of procedures before the launch of a product that
describes the periodic maintenance and repair procedures
expected over the product life. It is then iteratively updated
during the life of the product when issues are encountered by
users and solutions to problems are identified by technical
support personnel. This process is even more problematic
when the devices being supported have a very short lifecycle
and/or wide variability (e.g., in the case of printing devices
or mobile phones).

Technical knowledge bases are often used for self-help
web sites targeted to device users or agents answering
remote calls in a call center. In the latter case, the agents may
receive a number of requests with the same problems to be
solved. Reviewing these interactions can be used to identity
the descriptions of new problems for a given device and the
associated solutions in order to enrich the knowledge base.
Often, there is a fairly formalized way for technical support
agents to provide feedback to knowledge base editing teams
in order for them to enrich a knowledge base from the
instructions they provided to the customer. However, the
process of capturing this information is manually intensive
and does not always identify the solution correctly, for
example, because not all the steps are recorded by the agent
or because the user has not performed the steps as specified.

There remains a need for a system and method to update
a knowledge base that incorporates the problems faced by
users of the device and the solutions developed.

INCORPORATION BY REFERENCE

The following references, the disclosures of which are
incorporated herein by reference, relate generally to trouble-
shooting systems and methods: U.S. Pub. No. 20050137843,
published Jun. 23, 2005, entitted METHOD AND APPA-
RATUS FOR AUTHORING DOCUMENTS USING
OBJECT-BASED ELEMENTS AS AN INTERACTION
INTERFACE, by Veronika Lux; U.S. Pub. No.
20080294423, published Nov. 27, 2008, entitled INFORM-
ING TROUBLESHOOTING SESSIONS WITH DEVICE
DATA, by Stefania Castellani, et al.; U.S. Pub. No.

20

25

40

45

55

2

20090106224, published Apr. 23, 2009, entitled REAL-
TIME QUERY SUGGESTION IN A TROUBLE SHOOT-
ING CONTEXT, by Frederic Roulland, et al.; U.S. Pub. No.
20090292700, published Nov. 26, 2009, entitled SYSTEM
AND METHOD FOR SEMI-AUTOMATIC CREATION
AND MAINTENANCE OF QUERY EXPANSION
RULES, by Stefania Castellani; et al; U.S. Pub. No.
20100149571, published Jun. 17, 2010, entitted METHOD
AND APPARATUS FOR AUTOMATED CALL ASSIS-
TANCE FOR MALFUNCTIONS IN AN IMAGE PRO-
DUCTION DEVICE, by Tracy E. Thieret, et al.; U.S. Pub.
No. 20100229080, published Sep. 9, 2010, entitled COL-
LABORATIVE LINKING OF SUPPORT KNOWLEDGE
BASES WITH VISUALIZATION OF DEVICE, by Fred-
eric Roulland, et al.; U.S. Pub. No. 20110270771, published
Nov. 3, 2011, entitled SYSTEM AND METHOD FOR A
FLEXIBLE MANAGEMENT OF THE ESCALATION OF
SUPPORT FOR DEVICES, by Jean-Marc Coursimault, et
al., U.S. Pub. No. 20120150920, published Jun. 14, 2012,
entitted METHOD AND SYSTEM FOR LINKING TEX-
TUAL CONCEPTS AND PHYSICAL CONCEPTS, by
Frederic Roulland, et al.; U.S. Pub. No. 20130197899,
published Aug. 1, 2013, entitled SYSTEM AND METHOD
FOR CONTEXTUALIZING DEVICE OPERATING PRO-
CEDURES, by Frederic Roulland, et al.; U.S. Pat. No.
5,490,089, issued Feb. 6, 1996, entitled INTERACTIVE
USER SUPPORT SYSTEM AND METHOD USING SEN-
SORS AND MACHINE KNOWLEDGE, by Craig A.
Smith, et al.; U.S. Pat. No. 7,647,534, issued Jan. 12, 2010,
entitted METHOD FOR AVOIDING REPETITION OF
USER ACTIONS BY USING PAST USERS’ EXPERI-
ENCES, by Stefania Castellani, et al.; U.S. Pat. No. 7,715,
037, issued May 11, 2010, entitled BI-DIRECTIONAL
REMOTE VISUALIZATION FOR SUPPORTING COL-
LABORATIVE MACHINE TROUBLESHOOTING, by
Stefania Castellani, et al.; U.S. Pat. No. 7,823,062, issued
Oct. 6, 2010, entitled INTERACTIVE ELECTRONIC
TECHNICAL MANUAL SYSTEM WITH DATABASE
INSERTION AND RETRIEVAL, by Matthew R. Liberty, et
al; U.S. Pat. No. 8,280,842, issued Oct. 2, 2012, entitled
COLLABORATIVE LINKING OF SUPPORT KNOWL-
EDGE BASES WITH VISUALIZATION OF DEVICE, by
Frederic Roulland, et al.; U.S. Pat. No. 8,621,362, issued
Dec. 31, 2013, entitted MOBILE SCREEN METHODS
AND SYSTEMS FOR COLLABORATIVE TROUBLE-
SHOOTING OF A DEVICE, by Stefania Castellani, et al.;
and U.S. application Ser. No. 13/849,630, filed Mar. 25,
2013, entitled ASSISTED UPDATE OF KNOWLEDGE
BASE FOR PROBLEM SOLVING, by Denys Proux.

BRIEF DESCRIPTION

In accordance with one aspect of the exemplary embodi-
ment, a method for generating operating procedures includes
receiving a log of a troubleshooting session in which a user
has performed operations on a device, the session log
including data from the device. The device data includes a
sequence of detected operations performed on the device,
each detected operation causing a component of the device
to change states. Steps of a candidate operating procedure
are generated, based on the log, each of the steps corre-
sponding to one of the detected operations. Provision may be
made for identifying missing steps of the candidate operat-
ing procedure based on a device model. The device model
includes at least one of: state charts for a plurality of
components of the device, and stored operability constraints
that specify the state of another component in order for an



US 9,467,583 B2

3

operation to be performed on a given component. The
candidate operating procedure is compared with existing
operating procedures stored in a knowledge base for the
device to identify at least one existing operating procedure
which includes steps which match at least some of the steps
of'the candidate operating procedure. Based on the identified
at least one existing operating procedure, a textual descrip-
tion is generated, based on the textual description of the
matching steps. The candidate operating procedure is pre-
sented to an editor for validation.

At least one of the generating, identifying, and comparing
may be performed with a computer processor.

In accordance with another aspect of the exemplary
embodiment, a system for generating operating procedures
includes memory which stores a device model. The device
model includes state charts for a plurality of components of
the device and operability constraints for at least some of the
components. A procedure generator receives a log of a
troubleshooting session in which a user has performed
operations on a device. The log includes data from the
device. The device data includes a sequence of detected
operations performed on the device, each detected operation
causing a component of the device to change states. The
procedure generator also generates steps of a candidate
operating procedure based on the log, each of the steps
corresponding to one of the detected operations, identifies
missing steps of the candidate operating procedure based on
the device model, and compares the candidate operating
procedure with existing operating procedures stored in an
associated knowledge base for the device to identify at least
one existing operating procedure which includes steps which
match at least some of the steps of the candidate operating
procedure. Based on the identified at least one existing
operating procedure, the procedure generator generates a
textual description based on the textual description of the
matching steps. The procedure generator generates a graphi-
cal user interface for presenting the candidate operating
procedure to an editor for validation. A processor in com-
munication with the memory implements the procedure
generator.

In accordance with another aspect of the exemplary
embodiment, a method for generating operating procedures
includes, with an interface generator, conducting a trouble-
shooting session in which a user receives instructions based
on operating procedures stored in a knowledge base and
performs operations on a device. A log of the troubleshoot-
ing session is generated. The log including data from the
device. The device data includes a sequence of detected
operations performed on the device, each detected operation
causing a component of the device to change states. Steps of
a candidate operating procedure are generated, based on the
log, each of the steps corresponding to one of the detected
operations. The candidate operating procedure is compared
with existing operating procedures stored in a knowledge
base for the device to identify at least one existing operating
procedure which includes steps which match at least some of
the steps of the candidate operating procedure and, based on
the identified at least one existing operating procedure, a
textual description is generated, based on the textual
description of the matching steps. The candidate operating
procedure is output.

One or more of the generating and comparing may be
performed with a computer processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overview of the exemplary system and
method;

10

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 is a functional block diagram of an environment in
which a system for the semi-automatic generation of oper-
ating (maintenance/repair) procedures operates in accor-
dance with one aspect of the exemplary embodiment;

FIG. 3 is a flow chart illustrating a method for the
semi-automatic generation of operating procedures in accor-
dance with another aspect of the exemplary embodiment;

FIG. 4 is a flow chart illustrating procedures generation in
the method of FIG. 3; and

FIGS. 5-7 graphically illustrate finite state machines for
exemplary device components;

FIG. 8 is a screenshot of an example user interface for
displaying a graphical representation of a device and a
related operating procedure to a user; and

FIG. 9 is a screenshot of an example user interface for
displaying a candidate operating procedure to an editor.

DETAILED DESCRIPTION

Aspects of the exemplary embodiment relate to a system
and method for proposing updates to a knowledge base
which make use of recorded logs of troubleshooting ses-
sions. The method facilitates semi-automated creation of
new procedures in the knowledge base. In particular, a
device troubleshooting session within a virtual environment
is recorded in order to help the editors of the knowledge base
procedures to generate a textual procedure to be added to the
technical support knowledge base of that device. The exem-
plary method provides for contextualizing the applicability
of the procedures, the automated definition of some or all of
the steps of the procedures, natural language text generation
for each of these steps, and assisted review of the resulting
procedure.

FIG. 1 provides an overview of an environment in which
a procedure generation system 10 operates. The system
includes or has access to a collaborative troubleshooting
interface generator 12, which is used to assist a particular
device user 14 experiencing a problem with a physical
device 16 during a troubleshooting session. During the
troubleshooting session, an expert, such as an agent 18, who
is located in a remote help desk, may propose a solution to
a problem faced by the user by providing a verbal or textual
description of the steps of a solution. For generating the
proposed description, the agent may use an existing techni-
cal support knowledge base 20 for the device. The knowl-
edge base 18 may also be available to users so that they can
look at existing documented procedures that could solve the
problem being experienced. The knowledge base 20
includes a set of procedures for solving known problems
with the device. The agent 18 may provide a modified or
new procedure if the procedures retrieved from the knowl-
edge base 20 do not appear to provide a solution to the
problem.

A procedure generator 22 of the system is configured for
recording a new procedure into the knowledge base 18
through interaction with a human procedures editor 24, e.g.,
at the end of the session. The procedure generator 22 has
access to a session log 26 of the troubleshooting session. The
session logs may each include a set of user interactions with
a given device (e.g., as a sequence of recorded operations
performed on the device 16), related device data, and
optionally recordings of remote exchange with the help
desk, all of which is time stamped. The procedure generator
22 also has access to a device model 28 for the device on
which the troubleshooting session was based. The device
model 28 is a virtual representation of the device that models



US 9,467,583 B2

5

not only the visual representation of the device but also a
conceptual description of the device (synthetic functional
description of the device).

The interface generator 12 detects the start and end of a
troubleshooting session and creates a session log 26 which
includes information generated between the start and end
times. During the troubleshooting of a problem, the interface
generator 12 may use the device model 28, and information
coming from the device 16 concerning its status and con-
figuration, to generate a virtual representation 30 of the
device. The representation 30 shows components of the
device that are to be manipulated by the user to address the
user’s problem. U.S. Pat. No. 7,715,037 describes one
example of collaborative support technology developed to
facilitate the troubleshooting work between a remote agent
and a device user which involves a suitable shared virtual
representation of the device. Such a shared representation 30
can be employed in the exemplary method for assisting the
user during the troubleshooting session. The agent may
utilize the shared representation to identify components of
the device which the user should manipulate to solve the
problem with the device that the user has conveyed to the
agent. The user may use the shared representation to identify
the physical components on the device 16 that are to be
manipulated.

The interface generator 12 may be connected to the real
device 16 to collect from it device data 32 including the
information about the status of the device (for example, door
or tray open for a printer, current screen for a graphical user
interface). Throughout the session, data 32 describing the
sequence of operations performed by the user on the actual
device 16, the status of the device 16 between each of these
steps, is collected and stored in the session log 26. The
session log may also record data representing the operations
performed on the virtual representation 30 of the device
and/or voice recordings made by the user and/or agent.

Once a session is finished, the procedures editor 24 can
decide to create a new procedure from the information
collected in this session. The procedure generator 22 assists
the editor 24 in various ways, including contextualization of
the procedures, addition of missing steps, text generation
and manual reviewing, as described below.

In the exemplary embodiment, the “user” 14 is a person
who is proximate the physical device 16 in order to perform
operations (manual actions) on the device corresponding to
steps of an operating procedure or who is able to view the
manual steps being performed by another person. The user
can be the customer, a service technician, or the like. In
some embodiments, the user also serves as the procedures
editor 24 or may operate in cooperation with the procedures
editor to review a candidate procedure generated from the
session log 26.

In the example embodiment, the device 16 may be a
printer or other electromechanical device. As used herein, a
“printer” can include any device for rendering an image on
print media using a marking material, such as ink or toner.
A printer can thus be a copier, laser printer, bookmaking
machine, facsimile machine, or a multifunction machine
(which includes one or more functions such as scanning,
archiving, emailing, and faxing in addition to printing).
“Print media” can be a usually flimsy physical sheet of
paper, plastic, or other suitable physical print media sub-
strate for images.

FIG. 2 illustrates an exemplary computer-implemented
system 10 of the type shown in FIG. 1 in greater detail. The
system 10 includes one or more computing devices, such as
the illustrated server computer 40. Non-transitory, com-

10

15

20

25

30

35

40

45

50

55

60

65

6

puter-readable memory 42 stores instructions 44 for per-
forming the exemplary method, including the interface gen-
erator 12 and procedure generator 22. A processor 46 in
communication with the memory 42 executes the instruc-
tions. One or more input/output interfaces 48 allow the
system 10 to communicate with external devices via a wired
or wireless link 50, such as a cable, telephone line, local area
network, or a wide area network, such as the Internet. The
external devices may include an agent computing device 52,
operated by the help desk agent 18, and a procedures editor
computing device 54, operated by the procedures editor 24.
While only one of each computing device is shown, it is to
be appreciated that there may be many such computing
devices. The knowledge base 20 may be hosted by the
system 10, e.g., in memory 42, or by a remote server
computer in communication with the system. The device
model 28, for illustrative purposes, is stored in system
memory 42, although in other embodiments, it may be
hosted by a separate computer in communication with the
system.

The instructions also include a device model manager 56,
which is configured for keeping a conceptual representation
58 of the device 16 up-to-date with the actual device state,
as identified from the device data 32. The conceptual rep-
resentation 58 may be a part of the device model 28 or stored
separately. It indicates the current states of each of the
components represented in the device model 28. More
particularly, during the troubleshooting session, each time a
detected operation occurs on a component of the actual
device 16 that is included in the device model 28, device
data 32 including the new status corresponding to the
performance of the operation, is output by the device 16.
This information is received by the DMM 56 and the status
of the conceptual representation 58 of the device model 28
is updated accordingly. In addition, the DMM is capable of
making some inferences from the model 28. For example,
given the state of a component in the device model, it can
infer what other steps have to be completed before a given
step can be performed. This assists in identifying the indi-
vidual operations forming the sequence of operations which
have been performed on the device during the troubleshoot-
ing session and can also be used during the session to
support the interface generator 12 in updating the virtual
representation 30.

As shown in FIG. 2, the device 16 operated on by the user
includes a processor, such as a CPU 60, and memory 62,
which at least temporarily stores device data 32 acquired
from one or more sensors 66 associated with physical
components 68 of the device 16. The device 16 includes a set
of these components 68 on which a user can perform a
respective operation or set of operations. The components 68
can each assume, at any one time, a given state from a finite
set of states, such as open/closed, in/out, locked/unlocked, in
place/removed, on/off, and the like. Each user operation
generally involves only one single transition between two
states of a component, such as one of: opening a door (closed
to open), unlocking a locking mechanism (locked to
unlocked), pulling out a drawer (in to out), removing a
component (placed to removed), moving an electrical switch
from on to off, and vice versa, and the like. The output
device data 32, that is based on the information from the
sensors 66, includes information on the status of the device
16, which includes the current states of each of these
components 68 (to the extent that there is a sensor 66 for the
component that is capable of detecting or inferring the
current state). From this device data, a sequence of the
individual operations performed by a user during a trouble-



US 9,467,583 B2

7

shooting session can be reconstructed, based on the time at
which each operation was performed (and recorded by the
Sensors).

The sensors 66 may be real and/or virtual sensors. Exem-
plary sensors include, for example, optical sensors, electrical
sensors, mechanical sensors, magnetic sensors, temperature
sensors, weight sensors, and combinations thereof, which
can be used for detecting proximity or position of a com-
ponent, obstructions, such as paper jams, motion, speed,
magnetic field, electrical current/voltages, consumable
amounts, temperature, e.g., overheating, and the like. In the
case of a printer, for example, the physical components 68
may include doors, drawers, locking mechanisms, paper
handling components, marking components (such as photo-
receptors or ink jet heads), marking material supply con-
tainers (such as ink or toner cartridges), cleaning units, and
the like. For a device such as a printer having a large number
of such actionable components, there may be a large number
of sensors, such as 50, 100, or more sensors 66, which
provide sensor data from which individual performed opera-
tions can be identified. See for example, U.S. Pub. No.
20080126860, the disclosure of which is incorporated herein
by reference, for examples of such sensors. It is assumed that
there is a predefined set of operations performable by a user
on the device, which are detectable by the device sensors 66,
and that the existing operating procedures stored in the
knowledge base 20 are each indexed according to the ones
of these operations that are referred to in the steps of that
operating procedure.

A display device 70, such as an LCD screen, is integral
with or otherwise communicatively connected with the
physical device 16 and provides a user with visual instruc-
tions for operating the device 16, including displaying the
exemplary representation 30 of the procedure. An audible
display device, such as a loudspeaker, may alternatively or
additionally be provided for outputting the representation
30. A user input device 72, such as a key pad, keyboard,
touch or writable screen, and/or a cursor control device, such
as mouse, trackball, or the like, may be associated with the
display device 70 for inputting text and for communicating
user input information and command selections to the pro-
cessor 60. An interface (I/O) 74 allows the device 16 to
communicate with external devices via the wired or wireless
network 50. The various components 60, 62, 66, 68, 70, 72,
74 of the device 18 may all be communicatively connected
by a bus 76. The processor 60 may control the operation of
the device 16 as well as implementing instructions for
rendering the graphical representation 30 of a procedure on
the display device 70. In other embodiments, the associated
display device 70 and user input device 72 may be a part of
a separate computer device (not shown), such as a mobile
computing device, that is communicatively linked, e.g., via
a wireless network, to the system 10 and/or device 16. The
device 16 and/or associated display device 70 may also
provide for voice communication between the user and the
agent, or a separate communication link may be made, e.g.,
via a telephone line.

The computer system 10 may include one or more com-
puting devices 40, such as a desktop, laptop, or palmtop
computer, portable digital assistant (PDA), server computer,
cellular telephone, tablet computer, pager, combination
thereof, or other computing device capable of executing
instructions for performing the exemplary method. Some or
all of the instructions may be stored on the user’s device 16
and/or on a computing device which is linked/linkable
thereto for collecting device data 32.

20

30

40

45

8

The memory 42 may represent any type of non-transitory
computer readable medium such as random access memory
(RAM), read only memory (ROM), magnetic disk or tape,
optical disk, flash memory, or holographic memory. In one
embodiment, the memory 42 comprises a combination of
random access memory and read only memory. In some
embodiments, the processor 46 and memory 42 may be
combined in a single chip. The network interface 48 allows
the computer to communicate with other devices via a
computer network, such as a local area network (LAN) or
wide area network (WAN), or the Internet, and may com-
prise a modulator/demodulator (MODEM) a router, a cable,
and and/or Ethernet port. Memory 42 stores instructions for
performing the exemplary method as well as the processed
data.

The digital processor 26 is a device which can be vari-
ously embodied, such as by a single-core processor, a
dual-core processor (or more generally by a multiple-core
processor), a digital processor and cooperating math copro-
cessor, a digital controller, or the like. The processor 46, in
addition to controlling the operation of the computer 40,
executes instructions 44 stored in memory 42 for performing
the method outlined in FIGS. 3 and 4.

The term “software,” as used herein, is intended to
encompass any collection or set of instructions executable
by a computer or other digital system so as to configure the
computer or other digital system to perform the task that is
the intent of the software. The term “software” as used
herein is intended to encompass such instructions stored in
storage medium such as RAM, a hard disk, optical disk, or
so forth, and is also intended to encompass so-called “firm-
ware” that is software stored on a ROM or so forth. Such
software may be organized in various ways, and may include
software components organized as libraries, Internet-based
programs stored on a remote server or so forth, source code,
interpretive code, object code, directly executable code, and
so forth. It is contemplated that the software may invoke
system-level code or calls to other software residing on a
server or other location to perform certain functions.

Other computing devices which are in communication
with the system 10, including devices 16, 52, 54, may be
similarly configured with memory and a processor.

Further details of the system will now be described.
Device Model

The device model 28 includes, for a given type of device,
a model that, for each physical component 68 of the device,
may contain the following information:

1. A list 90 of component properties that each describes
either the configuration or the state of the given component.

2. A state chart 92 of all the operations that can be
physically performed on the given component and their
associated states.

3. Alist 94 of operability constraints that specify the status
requirements on other component(s) in order for an opera-
tion to be performed on the given component.

This information may be stored in memory 42, as illus-
trated in FIG. 2. Each component 68 has a unique identifier
by which the properties, state chart, and operability con-
straints are indexed, such as the component’s full name or an
alphanumeric code. The device model 28 also includes a
visual representation 96 of the device in which the compo-
nents are visualized.

An example of such a device model 28 that may be used
herein, is illustrated in above-mentioned US. Pub. No.
20130197899, incorporated by reference in its entirety, and
is described briefly here.



US 9,467,583 B2

9

1. Properties

The properties 90 of a component may describe:

1. Static characteristics of the respective component 68,
such as a capacity for a container, or the device model type;
and

2. Dynamic characteristics of the component that evolve
according to the operations performed on this component,
such as the content level for a container, the state of a door,
drawer, or lock mechanism, or position of a removable
component. The states of each component may be selected
from a finite set of states, such as “open” and “closed,” in the
case of a door, “placed” and “removed,” in the case of a
drawer or removable component, such as a container,
“locked” and “unlocked” in the case of a lock mechanism,
or “satisfactory” and “low” in the case of a consumable
level, such as toner, which is established to indicate or warn
about a special state, e.g., consumable level low.

2. State Charts

Each physically actionable component 68 of the device
has an associated state chart, which can be in the form of a
finite state machine, where transitions represent operations
(actions) and the states are the different states for the
component. FIGS. 5-7 show examples of state charts for
some physical components. Each of the state charts links one
or more actions performable on the component with first and
second (or more) states assumed by the component before
and after the action is performed. FIG. 5 shows a state chart
for a generic machine which has two states, state 1 and state
2. Action 1.2 changes the state from state 1 to state 2, and
action 2A does the reverse. An action 1.1 (corresponding to
the action 2.1), if performed when the component is in state
1, has no effect. The door state chart illustrated in FIG. 6
gives a specific case where action 1.2 is opening the door
and action 2.1 is closing the door. A sensor 66 associated
with the door component on the device 16 may be config-
ured for detecting at least one of these states (from which the
other state can be inferred, if needed). For example, an
optical, electrical, or mechanical sensor 66 detects when the
door 68 is closed. FIG. 7 illustrates state charts for two
interrelated components, a drawer and a locking mechanism
for the drawer. The drawer can be placed (pushed in) or
removed (pulled out) and the locking mechanism can be
locked or unlocked. The components are interrelated
because one or more states of one component is/are depen-
dent on one or more states of the other component. However,
the exemplary state chart 92 for a component 68 only
considers actions and states of that component and does not
deal with its interactions with the other components of the
device 16, which are described by operability constraints 94.

3. Operability Constraints

An operability constraint 94 operates to prevent an action
being performed on a component 68 unless another com-
ponent of the device 16 is in a given state (the other
component is assumed to be able to assume a plurality of
states). For example, using the state chart illustrated in FIG.
7, a drawer is an exemplary component 68 that can be placed
and removed and that is constrained by another component,
a locking mechanism. The locking mechanism has two
states: it can be locked and unlocked. The following oper-
ability constraints 94 can be defined for these two compo-
nents:

1. The action “remove” cannot be performed on the
drawer as long as the locking mechanism is in the “locked”
status.

2. The action “lock” cannot be performed on the locking
mechanism as long as the drawer is in the “removed” status.

20

25

30

40

45

65

10

The device model 28 also stores a visual representation 96
of the device 16. The visual representation 96 of the device
16 may include a 2D or 3D representation. The visual
representation may include at least the physical components
of the device that will be visible or actionable by a user in
the context of performing the operating procedures on the
device. In the case of a printer, for example, such a repre-
sentation 96 may include components such as paper storage
trays, access doors, moveable levers and baffles for access-
ing jammed sheets in the paper path, marking media replace-
able containers, such as toner cartridges or ink containers,
and waste toner receptacles, other replaceable items, such as
cleaning units, photoreceptor belts, and fuser roll heaters,
finisher components, such as collection trays, stapling
devices, and the like. As well as visualizing these compo-
nents, the 3D representation 96 may visualize appropriate
user actions, such as opening doors, turning levels, lifting
baffles and so forth which may be used to access and/or
repair a component, e.g., in the form of an animation. The
3D visual representation 96 can be based, for example, on
COLLADA™ open source software. This software applica-
tion is a 3D graphics description format based on XML. The
computed 3D model can be rendered by a viewer, such as
one based on Adobe™ Flash technology, which offers 3D
capabilities and which may be extended with additional 3D
libraries, such as PAPERVISION 3D™,

Knowledge Base

The knowledge base 20 stores a set of textual operating
procedures (P1, P2, etc.) 80, 82. The procedures 80, 82, etc.
may each be indexed by a description of the procedure. Each
procedure generally includes some steps, where a step
represents an operation to be performed on the device. In
some embodiments, each operating procedure includes a
problem description, which briefly describes a known prob-
lem with the type of device, and one or more solution
descriptions, each solution describing, in a sequence of
steps, how to solve the problem. Each procedure may
include a textual description of each of steps, describing the
operations a user is to perform on the device in order to
execute the procedure, and optionally also warnings about
operations the user should not perform. The procedure steps
of the knowledge base 20 may each have been indexed with
a reference to a respective one operation defined in the
device model 28 by using, for example, the method
described in above-mentioned U.S. Pub. No. 20130197899.
From the index, it is known, for example, which procedures
describe one specific operation and for each of the matching
procedures, which step of the procedure describes this
operation.

FIG. 3 illustrates a method which may be performed with
the system of FIGS. 1 and 2. The method begins at S100.

At S102, a user 14 of a device starts a troubleshooting
session, for example, by placing a telephone call to an agent,
logging on a web portal for the system, pushing a button on
the device 16, or the like. The collaborative troubleshooting
interface generator 12 then makes communication with the
device 16 and commences a timer for time stamping
recorded actions. Voice communication between the user
and agent, if participating in the session, may be via an audio
link, such as a telephone line, which may feed directly to the
device 16. During the troubleshooting session, the user
attempts to solve a problem with the device, such as perform
a maintenance or repair operation.

During the troubleshooting session, the agent 18 (or
device user 14) may query the knowledge base 20 with key
words describing a problem and retrieve a procedure which
appears to relate to the problem with the device being faced



US 9,467,583 B2

11

by the user. In other embodiments, the interface generator 12
may use the device data 32 (e.g., current status of the device,
such as alerts) to identify a possible problem with the device
16 and then automatically query the knowledge base 20,
based on this information. The interface generator 12 auto-
matically accesses the device model 28 to assist in formu-
lating the query. A combination of automated and manual
interactions may be used in some embodiments to specify
the problem.

The interface generator 12 uses the device model 28 and
knowledge base 20 to provide instructions to the user via the
graphical user interface 30. FIG. 8 illustrates an exemplary
graphical user interface 30 for performing a procedure to
replace the cleaning unit of a multifunction printer device
16.

The user interface generator 12 causes the display device
70 (as well as the agent’s screen, if participating in the
troubleshooting session) to display a 3D graphical represen-
tation 30 of the device 16 and the sequence 98 of steps (each
step generally referring to only a single action) for the user
to perform to execute a knowledge base operating procedure
relating to the identified problem. In the screenshot illus-
trated in FIG. 8, the user has completed the first step, as
indicated by the check mark, and is now being instructed to
perform the operation: “lift the retaining handle.” The
graphical representation 30 shows the device as it will look
after the first step has been completed, e.g., after the opening
of'the door 100, and identifies with an identifier 102, e.g., an
arrow, color, highlighting, and/or a video sequence, the
component on which the user needs to perform the action for
completing the next step.

The agent, if participating in the troubleshooting session,
may supplement the description with a voice instruction. In
some cases, the procedure may not include all the steps that
the user should perform or the knowledge base does not
include a procedure which quite fits the problem faced by the
user and thus the agent modifies the procedure from that
shown or describes a new procedure for the user to perform
which the agent anticipates may solve the problem. In some
embodiments, the user may modify the displayed procedure
to implement a new procedure. The displayed procedure
may be modified by removing one or more steps of the
displayed operating procedure, replacement of one or more
of the steps, adding one or more new steps, changing the
order of two or more of the steps, or a combination thereof.

When the troubleshooting session starts, the user interface
generator 12 requests initial device data 32 from the device.
The device data 32 initially received from the device may
include configuration properties of the device (which com-
ponents are present or missing in the user’s particular
configuration of the device), and well as device status
properties, such as alerts, which indicate an abnormal status
of the device, such as a missing component, consumable
which needs to be replaced, detected paper jams, or the like.
Additionally, the current device data 32 initially received
from the device includes the initial state of each of the
manually operable components of the device at that time, as
recorded by the sensors. In some cases, the user may have
begun an operating procedure without access to the knowl-
edge base prior to initiating the troubleshooting session,
such as by opening a door, pulling out a drawer, or other
action that the user anticipates may be part of a solution to
the problem. This information, if recorded by the sensors,
can be used by the system to tailor the operating procedure
that is presented to the user, for example, by omitting those
steps of the operating procedure which the interface gen-
erator infers that the user has already performed.

10

15

20

25

30

35

40

45

55

60

65

12

At S104, the user 14 performs one or more operations on
the device 16, at least some of which are detectable. Each
detectable operation causes one of the components to change
from a first of its known states to a second of its known
states. The sensors 68 detect the operations performed by the
user. These actions are recorded and time stamped and thus
can be correlated, in some cases, with the properties of the
device at the time (and optionally the time at which the
instructions were given and/or displayed).

The user (or agent) may terminate the troubleshooting
session, for example, when the steps have been performed
on the device. In some embodiments, the troubleshooting
session may be terminated automatically, for example after
a predetermined time has elapsed from the last recorded user
action. The interface generator 12 records the end time of the
troubleshooting session. In some cases, provision is made
for an acknowledgement to be received from the user or
agent that the session was successful (or not).

At S106, the device data 32, together with input from the
device model 28 and optionally also the knowledge base
information displayed or verbally presented, is combined to
generate the session log 26 for the troubleshooting session,
which is input to the procedure generator 22 of the system.

At 8108, the procedure generator 22 generates a candidate
procedure based on the session log 26 for the troubleshoot-
ing session.

At S110, the candidate procedure is presented to the
procedures editor 24 for editing and validation. The candi-
date procedure may be presented via a user interface dis-
played on the procedures editor’s display device. If at S112,
the procedures editor 24 accepts the candidate procedure
(after optionally modifying it), it is uploaded to the knowl-
edge base as a new knowledge base procedure 98 (S114).

The method ends at S116.

Further details of the method will now be described.
Procedure Generation (S108)

With reference to FIG. 2, the procedure generator 22 may
include several software components (separate or com-
bined), such as a contextualizing component (contextual-
izer) 110 which extracts relevant context from the device
data for describing the problem, a step generator 112, which
generates a sequence of steps based on the detected user
actions, a missing step identifier 114 for identifying missing
steps in the candidate operating procedure, a text generator
116 for comparing the sequence of steps with a set of
procedures in the knowledge base 20 to identify similar
operating procedures and incorporating textual information
from matching steps into the candidate operating procedure,
a presenter 118 for generating a graphical user interface for
presenting the candidate operating procedure to a human
editor, and an uploader 120 for uploading the candidate
procedure to the knowledge base, after any modification and
validation by the editor, as a new operating procedure.
Procedure generation may thus include the following steps,
as illustrated in FIG. 4:

1. Contextualization (S202)

This step includes finding relevant context to be associ-
ated with this candidate procedure. This is useful, in par-
ticular, for users of the knowledge base trying to retrieve a
procedure relevant to a current problem. These elements of
context may be extracted from the session log by looking at
the status of the device at the beginning of the troubleshoot-
ing session. Contextual information extracted in this step
can include one or more device properties selected from:

1. Configuration properties for the device, e.g., “firmware
version” or “stapler installed,” selected from a predefined set
of configurations for the device.



US 9,467,583 B2

13

2. Device status properties related to the current status of
the device, e.g., “black ink level low” or “missing input tray
1>

There may be a long list of device status and configuration
properties and only few of them may be symptomatic of the
problem that the procedure is meant to solve. For this reason,
some filtering may be performed to extract relevant prop-
erties. The filtering may be rule-based. Example rules are as
follows:

1. Retain the device status properties which are classed by
the device 16 (or the system) as being active alerts, since
they represent abnormal status of the device.

2. Retain only the configuration properties and device
status properties (other than alerts) which refer to compo-
nents of the device which were operated on during the
procedure.

The retained properties may be presented to the proce-
dures editor 24 for review, via the user interface 120. The
editor selects which ones to keep attached to the procedure
and this information is received by the procedures editor.

The retained properties may be automatically converted to
a textual description of the problem 126, such as: “for
devices that include a black ink cartridge, when the device
is providing an alert that black ink level is low, the following
procedure is used,” the highlighted portions being derived
from a device status property black ink level low and a
configuration property related to this status property (device
includes black ink cartridge).

The editor 24 may subsequently edit this automatically-
generated description, e.g., after reviewing the generated
candidate procedure.

Additionally, the context of the device at the end of the
session may be used to determine if the problem was fixed.
For example, if an alert for “black ink level low” is removed
by the end of the session, the procedure generator 22 can
infer that the sequence of operations performed by the user
solved the problem of low black ink and generate a problem
statement 126 for the candidate operating procedure which
refers to this problem.

2. Identification of Missing Steps (S204)

The sequence of operations stored in the session log 26 is
examined to identify missing steps. The sequence of (de-
tected) operations performed on the device 16 during the
troubleshooting session is first extracted from the respective
session log 26. The session logs 26 often capture only a
partial view of the actual steps that were performed on the
device. Missing procedure steps may be due to several
reasons, such as the troubleshooting session starting after
some operations have already been performed on the device
16. Some steps may be missing because they were not
illustrated as being performed on the virtual representation
of the device and/or when performed on the actual device,
either these operations are not detectable by a sensor 66 or
the sensor which normally detects the performed step may
be malfunctioning.

Some of the missing steps can be reconstructed using
operability constraints taken from the conceptual represen-
tation 58 of the device model 28. The procedure generator 22
analyzes the sequence of detected operations in the session
log and determines if they are possible, using the device
model 28. Each time an action is extracted from the session
log 26 which is determined to have required a previous
action which was not in the session log, a step corresponding
to this action can be added to the procedure steps. For
example, if at the start of the session, the cleaning unit is in
a “removed state,” the procedure generator 22 may infer that
the door to the cleaning unit component of the device has

10

15

20

25

30

35

40

45

50

55

60

65

14

already been opened and the cleaning unit has been
removed, since there is an operability constraint 94 which
specifies that the cleaning unit cannot be removed without
first opening the cleaning unit door, so steps for these two
actions may be added to the procedure. This approach does
not guarantee that all the missing actions that were per-
formed on the device are reconstructed. However, it ensures
that sequences of steps proposed in the candidate procedure
are achievable because they do not violate any of the
operability constraints of the device.

Text Generation (S206)

Once the sequence of steps for a procedure has been
reconstructed from the session log and missing steps, if any,
have been identified, the sequence of steps is translated into
a textual procedure which is readable by a user of the
knowledge base. This may be performed, for example, by
re-using segments of text described in already existing
procedures of the knowledge base. This has the following
advantages:

1. It provides a textual description of a step that was
initially written by a human editor and which has therefore
a richer syntax than the way in which the actions are stored.

2. It provides not only a description of the operation to be
performed but it may also be associated with some warnings
or tips to perform the operation.

3. It helps to keep a consistency in style and terminology
across the knowledge base.

One method of performing this step is as follows: A search
is made of the knowledge base for one or more existing
procedures with steps matching all or part of the sequence of
steps in the new candidate procedure. Each of the procedures
in the knowledge base is annotated with steps and indexed
according to the operation(s) being performed in each step.
Thus, a sequence of one or more operations forming a step
can be matched to a step of an operating procedure stored in
the knowledge base. Those knowledge base procedures
which match the longest sequence(s) of steps of the candi-
date procedure are retrieved. The matching procedures may
be retrieved from among the procedures for the same device
model or from procedures of a different device model which
shares some common components with this device model.

If all the steps of the candidate procedure exactly match
a single existing procedure in the knowledge base then a
prompt may be provided to the editor that the procedure
already exists in the knowledge base (S208). Optionally, a
counter for this particular knowledge base procedure may be
incremented to monitor how frequently the procedure has
been matched with a procedure identified from a trouble-
shooting session. This can help to identify problems faced
by users which are frequently occurring, allowing designers
to focus on ways to modify the device in the present model
or in a future model, to reduce the need for troubleshooting.

If only a subpart of the sequence of steps matches steps of
one or more procedures in the knowledge base, then frag-
ments of two or more knowledge base procedures may be
combined in order to describe the steps of the candidate
procedure. The fragments may be selected so that the largest
continuous fragments (most steps) are used as a priority and
such that the selected fragments in the existing procedure are
positioned in close proximity to the sequence of steps to be
generated in the new procedure (e.g., steps which occur at or
near the end of a knowledge base procedure are associated
with steps at or near the end of the candidate sequence of
steps).

This approach is useful in order to limit the inconsisten-
cies of the transitions from one fragment to another in the
newly created procedure.



US 9,467,583 B2

15

As an example, let A, B, C, D, E, F and G represent steps
in existing operating procedures. Assume that the recorded
procedure, after any reconstructing of missing steps, consists
of the sequence of steps: F-G-B-C-D. Let the closest match-
ing procedure found in knowledge base be A-B-C-D-E and
another close matching procedure found in knowledge base
be F-G. The text for the candidate sequence can thus be
generated from these two sequences as F-G-B-C-D-E. Note
that although the step E is not in the recorded procedure, it
may be included in the candidate sequence as possibly
having been an unrecorded step. As shown in this example,
the procedures editor may combine parts of two or more
existing procedures to match the sequence of steps.

For each of these matching steps, the textual description,
and any associated information, such as a video sequence
and/or links to a part of the 3D representation, is/are
retrieved from the knowledge base and used to form the
respective step of the candidate procedure. For each of the
steps of the created procedure, the procedure generator may
associate the actual time that was tracked during the comple-
tion of the associated operation within the troubleshooting
session. This information is useful to users of the knowledge
base as it is indicative of how much time they are likely to
need spend on each of the steps of the procedure and on the
overall procedure.

At the end of this step, the sequence of steps has been
translated into a user-friendly textual description of a pro-
cedure.

Manual Reviewing (S110)

This can be seen as the last step of the procedure gen-
eration and includes presenting the candidate procedure
generated automatically from the log to the editor 24 and
providing for an assisted review of the candidate procedure
by the editor. FIG. 9 illustrates an exemplary graphical user
interface 120 which enables the procedures editor 24 to
interact with the system to edit a candidate procedure 122.
The candidate procedure may include a sequence of two or
more steps, with an associated time 124 for each step, e.g.,
relative to a start time for the procedure, indicating the start
or end time for the step, derived from the time stamps for the
corresponding operations performed by the user, stored in
the session log. The user interface 120 may display the
problem statement 126 generated in the contextualizing step
and provide text entry boxes 128, 130 for the editor to type
in a title for the procedure and a description of the procedure.
Actuable areas of the screen, such as buttons 132, 134, 136,
may be provided to assist the editing and provide for the
procedure to be validated and saved.

It is to be appreciated that some steps which were per-
formed during a troubleshooting session may not have
proved useful for solving the problem with the device. These
unnecessary steps may form part of the generated candidate
procedure and can be removed by the editor. For example,
the editor may highlight the step to be removed and click on
a “remove step” button 132 or use another suitable selection
mechanism. When a step is removed, the procedure genera-
tor 22 keeps track of the operability constraints 94 of the
device model 28 and therefore it removes all steps which are
no longer possible once the initial step has been removed.

Optionally, the system 10 can report the steps that were
performed during the session but removed by the editor
during the reviewing process. This could indicate that such
a step is a common mistake that users may do when
operating the device. Therefore, rather than simply remov-
ing the step, it may be turned into a warning in the proce-
dure, e.g., saying: ‘please avoid performing . . . .

10

15

20

25

30

35

40

45

50

55

60

65

16

In addition to providing for the editor 24 with an interface
for removing unnecessary steps, the interface 120 may
provide the editor with the opportunity to add steps that
might not have been tracked by the automatic generation
process or customize the wording of any of the steps. For
example, FIG. 9 shows an “add step” button 134 which an
editor can click on to add an additional step, for example,
after a highlighted one.

Once the editor validates the candidate procedure, e.g., by
clicking on the save button 136, it is added to the knowledge
base 20 as a new procedure. The new procedure is indexed
by the user actions to which the steps refer. The new
procedure 98 may thereafter be accessed in a later trouble-
shooting session when a new user is attempting to solve a
problem with a device of the same type.

The exemplary embodiment thus described provides a
method to generate a textual procedure from a session log of
a troubleshooting system that uses a virtual environment.
While methods have been proposed for generating proce-
dures from recordings of live audio (and or visual) streams,
a difficulty with that approach is that it does not generate
procedures that are automatically segmented into steps, nor
is it feasible for them to be annotated or indexed according
to the operations being performed in each of the steps. This
makes it difficult to create a fully indexed procedure in a
knowledge base which relates to a particular problem.
Extensive manual segmentation of the video streams, which
is very labor intensive, may thus be needed.

The exemplary method provides for improved technical
support of devices in a variety of fields, such as document
generation and other businesses, such as household appli-
ance, personal computer, and mobile phone servicing where
technical support is provided from call centers on behalf of
a manufacturer or retailer of the product to users. Servicing
electromechanical devices, such as printers, is a significant
cost to the manufacturer or service contract provider. The
exemplary system enables such costs to be reduced by
providing customers with a more comprehensive tool to
support troubleshooting when they try to solve a problem
they are experiencing with a device. The system can also
assist the customer or a technician to perform maintenance
operations. As a result, the procedure can be performed more
efficiently and accurately by the user.

While the device 16 has been described in terms of a
printer, it is to be appreciated that the system and method are
applicable to other types of device without being closely
integrated with the device and may be provided as a service
to customers wishing to implement technical documentation
for a device in a more convenient format for the user.

The method illustrated in FIGS. 3 and/or 4 may be
implemented in a computer program product that may be
executed on a computer. The computer program product
may comprise a non-transitory computer-readable recording
medium on which a control program is recorded (stored),
such as a disk, hard drive, or the like. Common forms of
non-transitory computer-readable media include, for
example, floppy disks, flexible disks, hard disks, magnetic
tape, or any other magnetic storage medium, CD-ROM,
DVD, or any other optical medium, a RAM, a PROM, an
EPROM, a FLASH-EPROM, or other memory chip or
cartridge, or any other tangible medium from which a
computer can read and use.

Alternatively, the method may be implemented in transi-
tory media, such as a transmittable carrier wave in which the
control program is embodied as a data signal using trans-



US 9,467,583 B2

17

mission media, such as acoustic or light waves, such as those
generated during radio wave and infrared data communica-
tions, and the like.

The exemplary method may be implemented on one or
more general purpose computers, special purpose
computer(s), a programmed microprocessor or microcon-
troller and peripheral integrated circuit elements, an ASIC or
other integrated circuit, a digital signal processor, a hard-
wired electronic or logic circuit such as a discrete element
circuit, a programmable logic device such as a PLD, PLA,
FPGA, Graphical card CPU (GPU), or PAL, or the like. In
general, any device, capable of implementing a finite state
machine that is in turn capable of implementing the flow-
chart shown in FIGS. 3 and/or 4, can be used to implement
the method for generating an operating procedure.

Without intending to limit the scope of the exemplary
embodiment, the following example illustrates application
of the method in the context of troubleshooting for multi-
function printing devices.

Example

In the example, the procedure generator 22 was provided
through a tablet computer which can be used by a user in a
self-help or collaborative context. An interface 120 analo-
gous to that shown in FIG. 9 was used to display the output
of the procedure automatically generated after a session
where the user was replacing the cleaning unit of the device.
The interface shown in FIG. 9 illustrates the five steps that
where reconstructed from the session log together with the
text that was generated for each of the steps by looking at
procedures previously existing in the knowledge base. In
this particular example, steps 2 and 5 of the candidate
procedure were not extracted from the log because the
retaining handle of this model does not have a sensor
associated with its position. These two steps were inferred
from the operability constraints of the underlying device
model.

It will be appreciated that variants of the above-disclosed
and other features and functions, or alternatives thereof, may
be combined into many other different systems or applica-
tions. Various presently unforeseen or unanticipated alter-
natives, modifications, variations or improvements therein
may be subsequently made by those skilled in the art which
are also intended to be encompassed by the following
claims.

What is claimed is:

1. A computer program product comprising a non-transi-
tory recording medium storing instructions, which when
executed on a computer, cause the computer to perform a
method for generating new operating procedures for main-
tenance or repair of a device comprising:

receiving a log of a troubleshooting session in which a

user has performed operations on the device, the ses-
sion log including data from the device, the device data
including a sequence of detected operations performed
on the device, each detected operation causing a com-
ponent of the device to change states;

generating steps of a candidate operating procedure for

maintenance or repair of the device based on the log,
each of the steps of the candidate operating procedure
corresponding to one of the detected operations;
providing for identifying missing steps of the candidate
operating procedure based on a device model which
includes at least one of state charts for a plurality of
components of the device and stored operability con-
straints that specify the state of another component in

5

10

15

20

25

30

35

40

45

50

55

60

18

order for an operation to be performed on a given
component, and, where a missing step is identified,
adding a corresponding step to the candidate operating
procedure;

translating the sequence of steps of the candidate operat-

ing procedure into a textual candidate operating pro-
cedure, comprising comparing the candidate operating
procedure with existing operating procedures stored in
a knowledge base for the device to identify at least one
existing operating procedure which includes steps
which match at least some of the steps of the candidate
operating procedure and, based on the identified at least
one existing operating procedure, generating a textual
description of the operating procedure based on the
textual description of the matching steps, wherein when
the identified at least one existing operating procedure
comprises at least two existing operating procedures,
providing for combining fragments of the at least two
existing operating procedures to describe the steps of
the candidate procedure; and

providing for presenting the candidate operating proce-

dure to an editor for validation as a new operating
procedure.

2. The computer program product of claim 1, wherein the
knowledge base includes a plurality of operating procedures,
each including a plurality of steps, each of the plurality of
steps corresponding to an operation performed on a device,
and wherein the plurality of operating procedures are each
indexed according to the operations corresponding to the
steps of the operating procedure.

3. The computer program product of claim 1, wherein the
device data includes initial states for each of a plurality of
components of the device.

4. The computer program product of claim 1, wherein the
device data includes device status properties, the device
status properties including alerts, when generated by the
device, which indicate an abnormal status of the device.

5. The computer program product of claim 1, wherein the
session log is received from an interface generator which
provides access to the knowledge base during the trouble-
shooting session.

6. The computer program product of claim 1, wherein the
components of the device on which the operations are
performed each has a predefined set of states.

7. The computer program product of claim 6, wherein for
at least one of the components, the predefined set of states
is selected from the group consisting of:

placed and removed;

open and closed; and

locked and unlocked.

8. The computer program product of claim 1, wherein the
device includes a plurality of sensors, each of the sensors
detecting operations performed on a respective component.

9. The computer program product of claim 1, wherein the
providing for identifying missing steps comprises providing
for identifying at least one of:

an initial state of a component at the start of the trouble-

shooting session, the initial state and the device model
indicating that an operation has been performed on the
component prior to the start of the troubleshooting
session; and

an operation performed on a component for which there

is an operability constraint that specifies the state of
another component in order for that operation to be
performed on a given component and the session log
does not include a record of the other component
having been changed to the specified state.



US 9,467,583 B2

19

10. The computer program product of claim 1, further
comprising providing for detecting when the editor deletes
one of the steps of the candidate operating procedure and
when the editor deletes a step, generating a textual descrip-
tion in another step which indicates that performance of the
deleted step is to be avoided.

11. The computer program product of claim 1, wherein
when the editor validates the candidate operating procedure,
generating a new operating procedure in the knowledge base
based on the candidate operating procedure.

12. The computer program product of claim 1, wherein
the providing for presenting the candidate operating proce-
dure to an editor for validation comprises generating a
graphical user interface for display to the editor on a display
device which represents the candidate operating procedure
as a sequence of steps.

13. The computer program product of claim 1, wherein
during the troubleshooting session, a graphical user interface
is generated for display to the user which illustrates an
operating procedure in the knowledge base as a sequence of
steps to be performed on the device.

14. The computer program product of claim 13, wherein
the device model includes a conceptual representation of the
device which is updated, during the troubleshooting session,
by a device model manager to reflect a current state of
components in the device model, based on the data received
from the device, the updates being provided to an interface
generator which generates the graphical user interface.

15. The computer program product of claim 1, wherein
the method further comprises extracting contextual infor-
mation from the device data and creating a problem state-
ment based on the device data.

16. The computer program product of claim 1, wherein
the device comprises a printer.

17. A system comprising memory which stores instruc-
tions for performing a method for generating new operating
procedures and a processor, in communication with the
memory, for executing the instructions, the method com-
prising: receiving a log of a troubleshooting session in which
a user has performed operations on a device for maintenance
or repair of the device, the session log including data from
the device, the device data including a sequence of detected
operations performed on the device, each detected operation
causing a component of the device to change states; gener-
ating steps of a candidate operating procedure based on the
log, each of the steps of the candidate operating procedure
representing an operation to be performed on the device and
corresponding to one of the detected operations; providing
for identifying missing steps of the candidate operating
procedure based on a device model which includes at least
one of state charts for a plurality of components of the
device and stored operability constraints that specify the
state of another component in order for an operation to be
performed on a given component; comparing the candidate
operating procedure with existing operating procedures
stored in a knowledge base for the device to identify at least
one existing operating procedure which includes steps which
match at least some of the steps of the candidate operating
procedure; if all the steps of the candidate procedure exactly
match a single existing procedure in the knowledge base,
providing a prompt that the procedure already exists, oth-
erwise, based on the identified at least one existing operating
procedure, generating a textual description based on the
textual description of the matching steps, and wherein when
the identified at least one existing operating procedure
comprises at least two existing operating procedures which,
in combination, match the steps of the candidate operating

10

15

20

25

30

35

40

45

50

55

60

65

20

procedure, providing for combining fragments of the at least
two existing operating procedures to describe the steps of
the candidate procedure; and providing for uploading the
candidate operating procedure to a knowledge base as a new
operating procedure.

18. A system for generating new operating procedures for
repair or maintenance of a device, comprising: memory
which stores a device model, the device model including
state charts for a plurality of components of the device and
operability constraints for at least some of the components;
a procedure generator which: receives a log of a trouble-
shooting session in which a user has performed operations
on a device, the log including data from the device, the
device data including a sequence of detected operations
performed on the device, each detected operation causing a
component of the device to change states, generates steps of
a candidate operating procedure for maintenance or repair of
a device based on the log, each of the steps representing an
operation to be performed on the device and corresponding
to one of the detected operations, identifies missing steps of
the candidate operating procedure based on the device
model, and compares the candidate operating procedure
with existing operating procedures stored in an associated
knowledge base for the device to identify at least one
existing operating procedure which includes steps which
match at least some of the steps of the candidate operating
procedure and, when only a subpart of the sequence of steps
matches steps of one or more existing operating procedures
in the knowledge base and when the identified at least one
existing operating procedure comprises at least two existing
operating procedures which, in combination, match the steps
of the candidate operating procedure, generates a textual
description based on a combination of fragments of the
identified at least two existing operating procedures; and
generates a graphical user interface for presenting the can-
didate operating procedure to an editor for validation; and a
processor in communication with the memory which imple-
ments the procedure generator.

19. A method for generating new operating procedures
comprising: with an interface generator, conducting a
troubleshooting session in which a user receives instructions
based on operating procedures stored in a knowledge base
and performs operations on a printing device; with the
printing device, generating a log of the troubleshooting
session, the log including data from the device, the device
data including a sequence of detected operations performed
on the device, each detected operation causing a component
of the device to change states; with a computer processor,
generating steps of a candidate operating procedure based on
the log, each of the steps of the candidate operating proce-
dure representing an operation to be performed on the device
and corresponding to one of the detected operations; with a
computer processor, comparing the candidate operating pro-
cedure with existing operating procedures stored in a knowl-
edge base for the device, each of the existing operating
procedures including a sequence of steps, each of the steps
of the existing operating procedure representing an opera-
tion to be performed on the device, to identify at least one
existing operating procedure which includes steps which
match at least some of the steps of the candidate operating
procedure and, when only a subpart of the sequence of steps
matches steps of one or more procedures in the knowledge
base and when the identified at least one existing operating
procedure comprises at least two existing operating proce-
dures which, in combination, match the steps of the candi-
date operating procedure, generating a new operating pro-
cedure textual description, based on a combination of



US 9,467,583 B2
21

fragments of the at least two existing operating procedures
to describe the steps of the candidate procedure; and out-
putting the new operating procedure.

#* #* #* #* #*

22



